TRHMA MHXANIKON H/Y & NAHRO®OPIKHE
MANEMIZTHMIO IRANNINGN

T.8. 1186, IQANNINA, 45110
T: 265100 8817 - 8813 - 71%
hittp:/ fwww. cse.uoi.gr

DEPT. OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF [OANNINA

P.0. BOX 1186, IOANNINA
GR-45110, GREECE

T: +30 265100 8817 - 8813 - 7196
http://www.cse.uoi.gr

ThAHMA MHXANIKQN H/Y KAl AHPO®OPIKHE - NANETIZTHRIO IGANNINDN
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING - UNIVERSITY OF I0ANNINA

EMINAPIO TMHMATOZ

MapouAng NikoAaog
Av. KaBnyntng
OMIAHTHz: TuApa Mnxavikwv H/Y &
MAnpodopikrg
MavemotAuto lwavvivwy
HMEPOMHNIA: Napaokeun, 23 MeBpouvapiov 2018
QPA: 12:00
AIOOYZA: AiBouoa Zepwvapiwv (Looyelo 111)
Ktrplo Tunpatog Mnxavikwyv H/Y&
MAnpodopkig
Ofpa

Interval Joins: Evaluation, Parallelization,
Aggregation

NepiAnyn

The interval join is a basic operation that finds application in temporal, spatial, and
uncertain databases. In this talk, | will present our recent research findings on the
evaluation of interval joins. In our work, we explore the applicability of a largely
ignored forward scan (FS) based plane sweep algorithm, which is extremely simple
to implement. We propose two optimizations of FS that greatly reduce its cost,
making it competitive to the state-of-the-art single-threaded interval join
algorithm while achieving a lower memory footprint. In addition, for the parallel
processing of interval joins, we study a domain-based partitioning approach that
does not produce duplicate results. Within our approach we propose a novel
breakdown of the partition-level join into a small number of independent mini-join
jobs with varying cost and manage to avoid redundant comparisons. We show
how these mini-joins can be scheduled in multiple CPU cores and suggest an
adaptive domain partitioning, aiming at load balancing. Finally, we study the
evaluation of a temporal aggregation operation, which can be used for selecting or
ranking intervals based on the number of join pairs they appear in. For this
problem, we present an algorithm that generates the result at the cost of only
scanning the sorted interval endpoints.



