Direct Rendering of Boolean Combinations of Self-trimmed Surfaces

Jarek Rossignac, Georgia Tech
Ioannis Fudos, University of Ioannina
Andreas Vasilakis, University of Ioannina
Rendering (Boolean combinations of) self-trimmed surfaces

Objective: Provide a formal definition of the interior of the manifold solid defined by a self-crossing surface. Ensures that the definition produces intuitive results during simple local deformation (mimicking union, intersection, difference) and over more complex deformation.

Applications: Preview of advanced (free-form) CAD operations where self-crossings extend Boolean. Animation of deforming objects.
Self-Trimmed Surface: Problem Formulation

A surface \(S \) is manifold when it is a compact and orientable 2-manifold without boundary.

We say that \(S \) is a **Self-Crossing Surface** (**SCS**) when its immersion contains non-manifold intersection edges where \(S \) passes through itself.

How to define the **interior**, \(I(S) \), of \(S \)?

We want to **render** the subset \(T(S) \) of \(S \) that is the **boundary** of \(I(S) \).

\(S \) is a **Self-Trimmed Surface** (**STS**) and \(T(S) \) is the **trim** of \(S \).
Self-trimmed surfaces: two problems

Pb 1: Given a self-crossing surface determine its trim

- (a)
- (b)
- (c)

Pb 2: Given S_0, an initial manifold boundary that is not self-crossing, and a continuous process D_t that deforms it to produce a time dependent surface S_t, determine its trim $T(S_t)$

Pb 1 is captured by static rules that depend only on the self crossing surface

Pb 2 is captured by dynamic rules that depend on the deformation path
Advantages of STS rendering

Eliminate the need for computing self-crossing curves

Provide realtime rendering of STS at variable LoD

Provide realtime inspection tools for STS (clipping, capping)

Treat STS as “valid” primitives in CAD, including CSG

Support animations that involve Booleans and time dependent STS
Overview: Primitive deformation

Primitive deformation: each point is crossed only once by S

Alternating Boundary Rule (ABR):
The status (in-trim or not) alternates at each self-crossing

Two complementary solutions: Which one to select?

Relation to winding number (index)?

$I(S) = \{P: w(P) \% 4 == 1 \text{ or } 2\}$
Overview: Complex, animated deformations

Decompose animation into series of simple deformations

At each frame, at each pixel:
For points just in front and just behind each surfel
compute winding number (before and after)
Conclude in-trim classification
Using fragments (surfels) from ray casting to determine and render interior/exterior and render the trim.

Compute in and out components by using the fragment information, find the first fragment between an in and an out component and render it.
Background

A self crossing surface (SCS) S partitions the 3D space W into open components, one of which is infinite (denoted by C_0).

C_i: interior (in) or exterior (out)

$I(S)$ is the closure of the union of C_i

The trim $T(S)$ is simply the boundary of $I(S)$

Boundary diminishing property: $T(S) \subseteq S$

Static rules for 2D: winding number or point index: given a self crossing closed loop C around a given point p, the index of p is the number of times that the curve travels counter clockwise around the point.
Winding number

The count of signed crossings of a ray to a point (the viewpoint) outside.

Signed crossings

Independent of the choice of ray
In 3D, the index $w(p, S)$ of a point p with respect to an SCS S:

We assume that p is not on S. Consider any path P from p to infinity.

k_i # of times that P enters S (# of front facing normals)

K_o # of times that P exits S (# of back facing normals)

Then, $w(p, S) = k_i - k_o$.
Going 3D

The point index is the signed generalization of the *overlap count*

Overlap count: the unsigned count of the number of surfels that correspond to a pixel (used for transparency effects)
Static rules for in/out classification

Here we present three static rules

1. Positive index rule

2. Parity or alternating component rule

3. Alternating border rule
Static Rules for in/out classification: positive index

Positive Index Rule: interior are all components with positive index (depends on the orientation of the surface) [Heisserman 1992]
Static Rules for in/out classification: positive index

Positive Index Rule: interior are all components with positive index (depends on the orientation of the surface) [Heisserman 1992]
Static Rules for in/out classification: positive index

Top tip wagging, bottom tip extending, bumps all captured by the positive index rule.
Static Rules for in/out classification: positive index

Cannot capture deformations. Complement is difficult to obtain.
Static Rules for in/out classification: parity and alternating border rules

Parity or alternating component rule: p is interior iff \(w(p) \) is odd. Does not trim anything, derives highly non-manifold objects. (b) Behave well in surface orientation modification.

Alternating border rule: p is interior iff \(\left\lfloor \frac{w(p)}{2} \right\rfloor \) is odd (c).

(a) (b) (c)
Determining the trim: parity and alternating border rules

For the parity rule, no trimming occurs (b). STS == SCS

Theorem (alternating border rule): adjacent faces have opposite classification with respect to the trim.

Lemma: The alternating border rule does not produce non manifold solids with simple self crossings (c)
Static Rules for in/out classification: alternating border rule

Alternating border rules yields maximal genus non-manifold objects.

Changing surface orientation => complement of the STS (see orange lines in (c))

To obtain the complement add two surrounding boxes (increase index by 2).

(a) (b) (c)
Static Rules for in/out classification

Static rules do not capture well deformations …
Dynamic Rules for in/out classification

Extension-normal confluence property: When deforming a surface towards the normal the points crossed either become interior or they are not affected.

Complement symmetry property: If we apply the same deformations on the complement we obtain the complement of the result.

Component homogeneity property: Each component contains only interior or only exterior points. This is a very important property since otherwise the border of the interior parts may not be a subset of the deformed initial surface. This is equivalent to the aforementioned **boundary diminishing** property.
Modeling complex deformations

We can apply and render sequences of primitive disjoint deformations. We apply the first set of primitive disjoint deformations: the deformations in this set are non intersecting and non self intersecting. Then we apply the second set. The first frame of each set is identical to the last frame of the previous set and is the reference frame for the current frame.
In the rest, we use as previous frame the reference frame, i.e. a frame after which we have applied only one set of disjoint concurrent deformations.

This means that the border will cross a point p only once in each set of disjoint concurrent deformations.
Dynamic Rules: Constructive rule

\[i(p, S') = \begin{cases}
1, & \text{iff } p \text{ is interior point} \\
0, & \text{iff } p \text{ is exterior point} \\
\text{undefined}, & \text{if } p \text{ is on the boundary } T(S)
\end{cases} \]

For the initial classification use any static rule, e.g.:

\[i(p, S_0) = \left\lfloor \frac{w(p, S_0)}{2} \right\rfloor \mod 2 \]

For the classification of surface \(S' = S_t \) based on the previous frame \(S = S_{t-1} \): A point belongs to the newly created volume iff

\[(w(p, S') \neq w(p, S')) \]

Thus

\[ip(p, S') = i(p, S) \text{ op } (w(p, S) \neq w(p, S')) \]

A op B can be: logical OR (union – additive operation), logical AND (intersection), logical difference (A \^\neg B)
Dynamic Rules: Constructive Rule

Extension-normal confluence property: No

Complement symmetry property: No

Component homogeneity property: No
Dynamic Rules: Constructive Rule

Although this rule captures design intent and has a constructive nature, it does not preserve component homogeneity. This may yield highly non-intuitive and formally ill-defined results, where the boundary B may not be part of the initial surface S. To address this problem, we use only the confluent deformation rule.
Dynamic Rules: Confluent Deformation Rule

For the initial classification of surface S_0 any static rule will do, e.g.:

$$i(p, S_0) = \left\lfloor \frac{w(p, S_0)}{2} \right\rfloor \mod 2$$

For the classification of surface $S' = S_t$ based on the previous instance $S = S_{t-1}$:

if $(w(p, S) == w(p, S'))$ then $i(p, S') = i(p, S)$ else

This means that it is 1 if the point index is increased and 0 if the point index is decreased.

$$i(p, S') = \left\lfloor \frac{w(p, S') - w(p, S)}{2} \right\rfloor \mod 2$$

Extension-normal confluence property: Yes

Complement symmetry property: Yes

Component homogeneity property: Yes if we enforce a restriction on the type of acceptable deformations
Dynamic Rules: Homogeneous Confluent Deformation Rule

A part s_{out} of surface S that is not part of the border B cannot be deformed towards the normal if s_{out} is between two exterior components. Likewise a part s_{in} of a surface S that is not part of border B cannot be deformed in a direction opposite to its normal if s_{in} is between two interior components.

Implementation wise this is a challenging rule to enforce. To enforce the deformation restriction we need to detect trimmed parts of the surface, i.e. parts that do not belong to the border and the interior/exterior classification of the adjacent components.

For the purposes of user interaction it is more intuitive to be more restrictive and prohibit deformations on all non-border (trimmed) surface parts.
Applications: CSG, LOD, capping

Boolean operations of solids obtained by self crossing surfaces

Change LOD at any point of the rendering process (consider this as deformation).

Capping and clipping.
Rendering Algorithm for Static Rules

Multipass Rendering

Depth Peeling Front
Depth Peeling Back
Point Index and Classification

Depth Peeling Front

depthPeelingFront:
while (!lockF) {
 peel the next front facing fragment f: depth(f) > depthF;
 depthF = depth(f);
 if depthF <= Dp then Of ++;
 else lockF = true;
}

classification and point index:
indexP = Of - Ob;
characterizationP = rule(Of - Ob);
Two pass Rendering
Point Index Computation
Classification

Point index computation
\texttt{pointIndexComputation:}
\begin{verbatim}
ADD_blend indexP on
for each fragment f {
 indexP:=0;
 if (depth(f) <= D_p) indexP= (F is frontFacing) ? 1 : -1;
}
\end{verbatim}

classification
characterizationP= rule(indexP);
Other Alternatives to Peeling

One pass rendering
Use FreePipe or Linked lists (2011, 2010) techniques.

FreePipe:
state of the art API and hardware,
pre allocation of large amount of memory

Linked lists:
state of the art API and hardware,
low memory requirements,
slowdown when creating linked lists due to memory write conflicts.
Rendering Algorithm for Static Rules

Trimming

Calculate indexP for clipping plane
Peel the first “visible” fragment
(part of the trim)
Color the corresponding pixel

depthPeeling:
while (!color) {
 peel the fragment f with the smallest depth: depth(f) > currentDepth;
 currentDepth= depth(F);
 w_b = w_a = currentIndex;
 if (f is frontFacing) w_a ++ ; else w_a -- ;
 currentIndex= w_a;
 if (rule(w_a)!=rule(w_b)) color=color(f);
}

finalColor:
use color for rendering the pixel;
Rendering Algorithm for Dynamic Rules

Index Computation and Classification for Clipping Plane Point

- Same index computation
- Slightly different classification based also on reference frame index and classification

Trimming is much more complicated, we need all previous frame info (i.e. point index, classification, z-value) for all fragments.

Instead we maintain in the scene the reference (previous) frame fragments as well

We also maintain a bit vector with the in/out classifications for all regions of the reference frame per pixel (i.e. for 64 layers we just need a 64 bit vector per pixel).

Color coding to denote whether a fragment is only in the current frame, only in the reference frame, or in both. Stored in the alpha-value of RGBA and is then automatically conveyed to the fragments
Rendering Algorithm for Dynamic Rules

pointIndexComputation:

```
ADD_blend [clIndex, rlIndex] on
    for each fragment f {
        [clIndex, rlIndex]=[0, 0];
        if (depth(f)<depth(C)) {
            w_f=(f is frontFacing) ? 1 : -1;
            case color.α(f) {
                0: [clIndex(f), rlIndex(f)]=[0, w_f];
                \( \frac{1}{2} \): [clIndex(f), rlIndex(f)]=[ w_f, w_f];
                1: [clIndex(f), rlIndex(f)]=[ w_f, 0];
            }
        }
    }
return [clIndex, rlIndex];
```
Rendering Algorithm for Dynamic Rules

depthPeeling:
while (!color) {
 peel the fragment f with the smallest depth: depth(f) > currentDepth;
 currentDepth= depth(f);
 case color.α(f) {
 0: referencePointCharacterization= RFBC[++referenceFragmentNumber];
 if (f is frontFacing) referenceIndex++; else referenceIndex --;
 ½: referencePointCharacterization= RFBC[++referenceFragmentNumber];
 if (f is frontFacing) referenceIndex++; else referenceIndex --;
 if (f is frontFacing) currentIndex ++; else currentIndex --;
 I_b= currentPointCharacterization;
 I_a=dynamic_rule(currentIndex, referenceIndex, referencePointCharacterization);
 currentPointCharacterization= I_a;
 if (I_a != I_b) color=color(f);
 1: if (f is frontFacing) currentIndex++; else currentIndex --;
 I_b= currentPointCharacterization;
 I_a=dynamic_rule(currentIndex, referenceIndex, referencePointCharacterization);
 currentPointCharacterization= I_a;
 if (I_a != I_b) color=color(f);
 }
}
Rendering CSG results

Use a variation of the rendering algorithm for the trim of dynamic rules

Reference Frame

Current Frame

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A ∩ B</th>
<th>A-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A ∪ B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A ∩ B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A-B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

AOPB

Reference Frame

Current Frame

<table>
<thead>
<tr>
<th></th>
<th>AUB</th>
<th>ANB</th>
<th>A-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUB</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ANB</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A-B</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Capping and LOD

Create a halfspace using the capping plane and subtract this from the object.

Treat change of LOD as deformation. Alternatively LOD can change in the initial surface S_0 and propagated to the rest of the sequence.
Results

Local influence deformations in conjunction with Laplacian smoothing OR control point movement of NURB surfaces combined with mesh subdivision.

All experiments were carried out on a commodity desktop with Intel Core i7-870@2.93GHz, 4GB DDR3 memory and NVIDIA GeForce GTX 480 graphics hardware using OpenGL and GLSL.
(a) The original NURB surface. (b and c) After applying a set of disjoint deformations. (d) Rendering the result of one more deformation with the static rule, where the upper extrusion is deformed so as to cross an extended hole (observe the unintuitive hole in the upper part) and (e) the same using the dynamic rule (no hole is present in the upper part). (f) Rendering the trim with the static rule after one more hole is created at the bottom, observe the unintuitive bump at the bottom and (g) the same with the dynamic rule (no bump is present). (h) g with clipping.
Results

(a) Object A. (b) Object B. (c) Rendering $A \cup B$, (d) $B - A$ and (e) $A \cap B$
Results

<table>
<thead>
<tr>
<th>Resolution 1024x768</th>
<th>Static Rules</th>
<th>Dynamic</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>FPS, number of passes and memory needed using the static rule without trimming.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>F2B</td>
<td>Dual</td>
<td>2 passes</td>
</tr>
<tr>
<td>Homer</td>
<td>Vertices</td>
<td>Best</td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td>Faces</td>
<td>Fps</td>
<td>Passes</td>
</tr>
<tr>
<td>Labrador</td>
<td>Fragments</td>
<td>510</td>
<td>212</td>
</tr>
<tr>
<td>Sphere</td>
<td>500</td>
<td>263</td>
<td>6</td>
</tr>
<tr>
<td>Deformed sphere</td>
<td>515</td>
<td>219</td>
<td>317</td>
</tr>
<tr>
<td>Deformed NURBS</td>
<td>330</td>
<td>149</td>
<td>88</td>
</tr>
<tr>
<td>Armadillo</td>
<td>320</td>
<td>149</td>
<td>88</td>
</tr>
<tr>
<td>Dragon</td>
<td>510</td>
<td>149</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>23</td>
<td>12</td>
</tr>
</tbody>
</table>

For dynamic rules without trimming there is a small overhead for all techniques in terms of FPS, here we present results of the 2 passes technique that attains the best results. The rightmost column corresponds to standard rendering without in/out classification.
Results

for rendering a trimmed SCS using the dynamic and the static rule. With multipass depth peeling, freepipe and linked lists.
Results

(a) (b) (c) (d) (e) (f) (g) (h)
Direct Rendering of Boolean Combinations of Self-Trimmed Surfaces
Direct Rendering of Boolean Combinations of Self-Trimmed Surfaces
Thank you!

More at:

Questions?