Aristidis Likas
Professor
Department of Computer Science and Engineering
University of Ioannina
GR-45110 Ioannina , Greece
Tel : +30-26510-08810
Fax : +30-26510-08882
e-mail : arly@cs.uoi.gr
Diploma in Electrical Engineering, National Technical
Ph.D. in Electrical and Computer
Engineering,
Office hours: Tuesday 9.30-11.30
· A. Likas, and A. Stafylopatis, "Multiscaling in Binary Hopfield-type
Neural Networks: Application to the Set Partitioning Problem", International Journal of Neural
Networks , Vol. 3, No. 2, pp. 55-65, June 1992.
· A. Stafylopatis and A. Likas, "Pictorial Information Retrieval Using the
Random Neural Network", IEEE Transactions on Software Engineering , Vol. 18, No. 7, pp.
590-600, July 1992.
· D. Kontoravdis, A. Likas and A. Stafylopatis, "A Path-Finding
Technique Based on the Integration of Neural Network Models at Different Levels
of Abstraction", Elektrik - Special Issue on Neural Networks , Vol.
2, No. 1, pp. 40-51, April 1994 (invited paper).
· D. Kontoravdis, A. Likas and A.
Stafylopatis, "Enhancing Stochasticity in
Reinforcement Learning Schemes: Application to the Exploration of Binary
Domains", Journal
of Intelligent Systems ,
Vol. 5, No. 1, pp. 49-77, 1995.
· A. Likas and A. Stafylopatis, "Differential Association and Operational
Equivalence of Discrete Hopfield Networks", Neural Network World , Vol. 5, No. 1, pp. 81-89, 1995.
· A. Likas and A. Stafylopatis, "A Parallel Algorithm for the Minimum
Weighted Vertex Cover Problem", Information Processing Letters
, Vol. 53, pp. 229-234,
1995.
· A. Likas, D. Kontoravdis and A.
Stafylopatis, "Discrete Optimization Based on
the Combined Use of Reinforcement and Constraint Satisfaction Schemes", Neural Computing and Applications ,
Vol. 3, pp. 101- 112, 1995.
· A. Likas, G. Papageorgiou and A.
Stafylopatis, "A Parallelizable Operation
Scheme of the Boltzmann Machine Optimizer Based on Group Updates", Neural, Parallel and Scientific
Computations ,
Vol. 3, pp. 451-466, 1995.
· M. Afif, A. Likas and V. Paschos, "A Natural Model and a Parallel Algorithm
for Approximately Solving the Maximum Weighted Independent Set Problem", Chaos, Solitons & Fractals , Vol.
5, No. 5, pp. 739-746, 1995.
· A. Likas and A. Stafylopatis, "Group Updates and Multiscaling: An
Efficient Neural Network Approach to Combinatorial Optimization", IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics , Vol. 26, No. 2, pp. 222-232,
April 1996.
· A. Likas, K. Blekas and A.
Stafylopatis, "Parallel Recombinative
Reinforcement Learning: A Genetic Approach", Journal of Intelligent Systems
, vol. 6, no. 2, pp.
145-177, 1996.
· A. Likas and K. Blekas, "A Reinforcement Learning Approach Based
on the Fuzzy Min-Max Neural Network", Neural Processing Letters
, vol. 4, no. 3, pp. 167-172,
1996.
· A. Likas and A. Stafylopatis, "High Capacity Associative Memory Based on
the Random Neural Network Model", International Journal of Pattern
Recognition and Artificial Intelligence , vol. 10, no. 8, pp. 919-937,
1997.
· A. Likas, G. Papageorgiou and A.
Stafylopatis, "A Connectionist Approach for
Solving Large Constraint Satisfaction Problems", Applied Intelligence
, vol. 7, pp. 215-225, 1997.
· I. Lagaris, A. Likas and D.
Fotiadis, "Artificial Neural Network
Methods in Quantum Mechanics", Computer Physics Communications , vol. 104, pp. 1-14, 1997.
· A. Likas, D. Karras and I. Lagaris, "Neural Network Training and Simulation
Using a Multidimensional Optimization System", International Journal of Computer Mathematics ,
vol. 67, pp. 33-46, 1998.
· K. Blekas, A. Stafylopatis, D.
Kontoravdis, A. Likas and P. Karakitsos, "Cytological Diagnosis Based on Fuzzy
Neural Networks",
Journal of Intelligent Systems , vol. 8, pp. 55-79, 1998.
· G. Papageorgiou, A. Likas and A.
Stafylopatis, "A Hybrid Neural Optimization
Scheme Based on Parallel Updates", International Journal of Computer Mathematics , vol. 67,
pp. 223-237, 1998.
· G. Papageorgiou, A. Likas and A.
Stafylopatis, "Improved exploration in
Hopfield Network State-Space through Parameter Perturbation Driven by Simulated
Annealing ", European
Journal of Operations Research , vol. 108, no. 2, pp. 283-292, 1998.
· I. Lagaris, A. Likas and D.
Fotiadis, "Artificial Neural Networks for
Solving Ordinary and Partial Differential Equations", IEEE Trans. on Neural Networks ,
vol. 9, no. 5, pp. 987-1000, 1998.
· A. Likas, A. and I. Lagaris, "Training Reinforcement Neurocontrollers
Using the Polytope Algorithm ", Neural Processing Letters , vol. 9, no. 2, pp. 119-127,
1999.
· A. Likas, "A Reinforcement Learning Approach to
On-Line Clustering", Neural Computation, vol. 11, no. 8, pp. 1915-1932, 1999.
· N. Vlassis and A. Likas, "A Kurtosis-Based Dynamic Approach to
Gaussian Mixture Modeling ", IEEE Trans. on Systems, Man and Cybernetics: Part A , vol. 29, no.
4, pp. 393-399, July 1999.
· A. Likas and A. Stafylopatis, "Training the Random Neural Network Using
Quasi-Newton Methods ",
European Journal of Operations Research , vol. 126, no. 2, pp. 331-339,
2000.
· I. Lagaris, A. Likas and D.
Papageorgiou, "Neural Networks Methods for
Boundary Value Problems with Irregular Boundaries", IEEE Trans. on Neural Networks ,
vol. 11, no. 5, pp. 1041-1049, Sept. 2000.
· C. Papaloukas, D. Fotiadis, A.
Liavas, A. Likas and L. Michalis, "A Knowledge-based Technique for Automated
Detection of Ischemic Episodes in Long Duration ECGs", Medical and Biological
Engineering and Computing , vol. 39, pp. 105-112, 2001.
· A. Likas, "Probability Density Estimation Using
Artificial Neural Networks", Computer Physics Communications , vol. 135, no. 2, pp. 167-175,
2001.
· A. Likas, "Reinforcement Learning Using the
Stochastic Fuzzy Min-Max Neural Network", Neural Processing Letters, vol. 13,
pp. 213-220, 2001.
· M. Titsias and A. Likas, "Shared Kernel Models for Class Conditional
Density Estimation", IEEE Trans. on Neural Networks , vol. 12, no. 5, pp. 987-997,
September 2001.
· N. Vlassis and A. Likas, "A greedy EM algorithm for Gaussian
mixture learning" , Neural Processing Letters , vol. 15,
pp. 77-87, 2002.
· A. Likas and V. Paschos, "A note on a new greedy solution
representation and a new greedy parallelizable heuristic for the traveling salesman
problem", Chaos,
Solitons & Fractals ,
vol. 13, pp. 71-78, 2001.
· C. Papaloukas, D. Fotiadis, A. Likas
and L. Michalis, "Use of a Novel Rule-Based
Expert System in the Detection of Changes in the ST Segment and T Wave in Long
Duration ECGs",
Journal of Electrocardiology , vol. 35, no. 1, pp. 27-34, 2002.
· C. Papaloukas, D. Fotiadis, A. Likas
and L. Michalis, "An Ischemia Detection Method based on
Artificial Neural Networks", Artificial Intelligence in Medicine , vol. 24, no. 2, pp.
167-178, February 2002.
· A. Likas, N. Vlassis and J. Verbeek,
"The Global K-Means Clustering Algorithm" , Pattern Recognition , vol. 36, pp. 451-461, 2003.
· A. Papadopoulos, D. Fotiadis and A.
Likas, "An Automatic
Microcalcification System based on a Hybrid Neural Network Classifier", Artificial Intelligence in
Medicine , vol. 25, no. 2, pp. 149-167, 2002.
· M. Titsias and A. Likas, "Mixture of Experts Classification Using a
Hierarchical Mixture Model" , Neural Computation , vol.
14, no. 9, pp. 2221-2244, 2002.
· D. Frossyniotis, A. Stafylopatis and
A. Likas, "A Divide-and-Conquer Method
for Multi-net Classifiers", Pattern Analysis and Applications Journal, vol. 6, no. 1, pp.
32-40, 2003.
· M. Titsias and A. Likas, "Class Conditional Density Estimation
Using Mixtures with Constrained Component Sharing" , IEEE Trans. on Pattern Analysis
and Machine Intelligence , vol. 25, no.7, pp. 924-928, 2003.
· K. Blekas, D. Fotiadis and A. Likas,
"Greedy Mixture Learning for
Multiple Motif Discovery in Biological Sequences", Bioinformatics , vol. 19,
no. 5, pp. 609-617, 2003.
· K. Blekas, D. Fotiadis and A. Likas,
"A Sequential Method for Discovering
Probabilistic Motifs in Proteins", Methods of Information in Medicine ,vol.
43, pp. 9-12, 2004.
· D. Frossyniotis, A. Likas and A.
Stafylopatis, "A Clustering Method Based on
Boosting", Pattern
Recognition Letters , vol. 25, pp. 641-654, 2004.
· A. Likas and N. Galatsanos, "A Variational Approach for Bayesian Blind
Image Deconvolution", , IEEE Trans. on Signal Processing, Special Issue on Machine Learning
Methods in Signal Processing , vol. 52, no. 8, pp. 2222-2233, August 2004.
· Y. Goletsis, C. Papaloukas, D.
Fotiadis, A. Likas, L. Michalis, "Automated Ischemic Beat Classification
Using Genetic Algorithms and Multicriteria Decision Analysis", IEEE Trans. on Biomedical
Engineering, vol. 51, no. 10, pp. 1717-1725, October, 2004.
· K. Blekas, D. Fotiadis and A. Likas,
"Motif-Based Protein Sequence
Classification Using Neural Networks", Journal of Computational Biology, vol.
12, no. 1, pp. 64-82, 2005.
· I. Tsoulos, I. Lagaris and A. Likas,
"Exploiting Parallelism for
Function Approximation Using Modular Neural Networks", Neural, Parallel and Scientific
Computations, vol. 13, pp. 161-178, 2005.
· K. Blekas, A. Likas, N. Galatsanos
and I. Lagaris, "A Spatially-Constrained Mixture Model for
Image Segmentation", IEEE Trans. on Neural Networks, vol. 16, no.2, 2005.
· A. Papadopoulos, D. Fotiadis and A.
Likas, "Characterization of Clustered
Microcalcifications in Digitized Mammograms Using Neural Networks and Support
Vector Machines",
Artificial Intelligence in Medicine,vol. 34,
pp. 141-150, 2005.
· K. Blekas, N. Galatsanos, A. Likas
and I. Lagaris, "Mixture Model Analysis for DNA
Microarray Images", IEEE Trans. on Medical Imaging, vol 24, no. 7, pp. 901-909,
2005.
· V. Protopappas, D. Baga, D.
Fotiadis, A. Likas, C. Papachristos and K. Malizos, "An Ultrasound Wearable System for the
Monitoring and Acceleration of Fracture Healing in Long Bones", IEEE Trans. on Biomedical
Engineering,vol. 52, no. 9, pp. 1597-1608, 2005.
· A. Anagnostakis, M. Tzima, G.
Sakellaris, D. Fotiadis and A. Likas, "Semantics-Based Information Modeling for
the Health-Care Administration Sector: The Citation Platform", IEEE Trans. on Information Technology in Biomedicine, vol. 9, no.
2, pp. 239-247, 2005.
· C. Constantinopoulos, M. Titsias and
A. Likas, "Bayesian Feature and Model
Selection for Gaussian Mixture Models", IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 28, no. 6, pp. 1013-1018, June 2006.
· C. Constantinopoulos and A. Likas, "An Incremental Training Method for the
Probabilistic RBF Network", IEEE Trans. on Neural Networks, vol. 17, no.4, pp. 966-974,
July 2006.
· G. Chantas, N. Galatsanos and A.
Likas, "Bayesian Image Restoration
Using a New Nonstationary Edge-Preserving Image Prior", IEEE Trans. on Image Processing,
vol. 15, no. 10, pp. 2987-2997, October 2006.
· C. Katsis, Y. Goletsis, A. Likas, D.
Fotiadis and I. Sarmas,
"A Novel Method for Automated
EMG Decomposition and MUAP Classification", Artificial
intelligence in medicine, vol. 37, no. 1, pp. 55-64, 2006.
· C. Nikou, N. Galatsanos and A.
Likas, "A Class-Adaptive Spatially
Variant Mixture Model for Image Segmentation", IEEE Trans. on Image Processing, vol.
16, no. 4, pp. 1121-1130, April 2007.
· C. Constantinopoulos and A. Likas, "Unsupervised Learning of Gaussian
Mixtures Based on Variational Component Splitting", IEEE Trans. on Neural Networks,
vol. 18, no. 3, pp. 745-755, 2007.
· A. Lukic, M. Wernick, D. Tzikas, X.
Chen, A. Likas, N. Galatsanos, Y. Yang, F. Zhao and S. Strother, "Bayesian kernel methods for analysis of
functional neuroimages", IEEE Trans. on Medical Imaging,
vol. 26, no. 12, pp. 1613-1622, 2007.
· D. Tzikas, A. Likas and N.
Galatsanos, "Large scale multikernel
relevance vector machine for object detection", International
Journal on Artificial Intelligence Tools, vol. 16, no. 6, pp. 967-979,
2007.
· A. Tzika, L. Astrakas, H. Cao, D.
Mintzopoulos, O. Andronesi, M. Mindrinos, J. Zhang, L. Rahme, K. Blekas, A.
Likas, N. Galatsanos, R. Carroll and P. Black, "Combination of High-resolution Magic
Angle Spinning Proton Magnetic Resonance Spectroscopy and Microscale Genomics
to Type Brain Tumor Biopsies", Int. Journal of Molecular
Medicine, vol. 20, no. 2, pp. 199-208, 2007.
· C. Constantinopoulos and A. Likas, "Semi-supervised and Active Learning with
the Probabilistic RBF Classifier", Neurocomputing,
vol. 71, no. 13-15, pp. 2489-2498, 2008.
· G. Chantas N. Galatsanos, A. Likas
and M. Saunders, "Variational Bayesian Image
Restoration Based on a Product of t-Distributions Image Prior", IEEE Transactions on Image Processing, vol. 17, no. 10, pp.
1795-1805, 2008.
· D. Tzikas, A. Likas and N. Galatsanos,
"The Variational approximation for
Bayesian inference", IEEE Signal Processing Magazine,
vol. 25, no. 6, pp. 131-146, 2008.
· V. Chassanis, A. Likas and N.
Galatsanos, "Simultaneous Detection of
Abrupt Cuts and Dissolves in Videos Using Support Vector Machines", Pattern Recognition Letters, vol. 30, no. 1, pp. 55-65, 2009.
· V. Chassanis, A. Likas and N.
Galatsanos, "Scene Detection in Videos
Using Shot Clustering and Sequence Alignment", IEEE
Trans. on Multimedia, vol. 11, no. 1, pp. 89-100, 2009.
· A. Marakakis, N. Galatsanos, A.
Likas and A. Stafylopatis, "Probabilistic Relevance Feddback Approach
for Content-based Image Retrieval Based on Gaussian Mixture Models", IET Image Processing, vol. 3, no. 1, pp. 10-25, 2009.
· D. Tzikas, A. Likas and N. Galatsanos,
"Variational Bayesian sparse kernel-based
blind image deconvolution with student's-t priors", IEEE Trans. on Image Processing, vol. 18, no. 4, 2009, pp. 753-764,
2009.
· D. Gerogiannis, C. Nikou and A.
Likas, "The mixtures of Student’s
t-distributions as a robust framework for rigid registration", Image and Vision Computing, vol. 27, no. 9, pp. 1285-1294, 2009.
· D. Tzikas, A. Likas and N.
Galatsanos, "Sparse Bayesian Modeling with
Adaptive Kernel Learning", IEEE Trans. Neural Networks,
vol. 20, no. 6, pp. 926-937, 2009.
· G. Tzortzis and A. Likas, "The Global Kernel k-Means Clustering
Algorithm", IEEE Trans on Neural Networks, vol. 20,
no. 7, pp. 1181-1194, 2009.
· C. Nikou, A. Likas and N.
Galatsanos, "A Bayesian framework for image
segmentation with spatially varying mixtures", IEEE
Transactions on Image Processing, vol. 19, no. 9, pp. 2278-2289, 2010.
· G. Tzortzis and A. Likas, "Multiple View Clustering Using a Weighted
Combination of Exemplar-based Mixture Models", IEEE
Trans on Neural Networks, vol. 21, no. 12, pp. 1925-1938, 2010.
· P. Karvelis, A. Likas and D.
Fotiadis, "Identifying touching and overlapping
chromosomes using the watershed transform and gradient paths", Pattern Recognition Letters, vol. 31, pp. 2474–2488, 2010.
· A. Marakakis, G. Siolas, N.
Galatsanos, A. Likas and A. Stafylopatis, "A Relevance Feedback Approach for Image
Retrieval Combining Support Vector Machines and Adapted Gaussian Mixture Models",
IET Image Processing, vol. 5,
no. 6, pp. 531-540, 2011.
· V. Karavasilis, C. Nikou and A.
Likas, "Visual tracking using the
earth mover’s distance between Gaussian mixtures and Kalman filtering", Image and Vision Computing, vol. 29, no. 5, pp. 295-305, 2011.
· A. Kalogeratos and A. Likas, "Document Clustering using Synthetic
Cluster Prototypes", Data and Knowledge Engineering,
vol. 70, no. 3, pp. 284-306, 2011.
· L. Astrakas, K. Blekas, C.
Constantinou, O.C. Andronesi, M. Mindrinos, A. Likas, L. Rahme, P.M. Black, K.
Marcus and A. Tzika., "Combining magnetic resonance spectroscopy and
molecular genomics offers better accuracy in brain tumor typing and prediction
of survival than either methodology alone", Int. Jïurnal of Oncology, vol. 38, no. 4, pp. 1113-1127, 2011.
· A. Kalogeratos and A. Likas, "Text Document Clustering using Global
Term Context Vectors", Knowledge and Information
Systems, vol. 31, pp. 455-474, 2012.
· D. Gerogiannis, C. Nikou and A.
Likas, "Registering sets of points
using Bayesian regression", Neurocomputing, vol. 89,
pp. 122-133, 2012.
· P. Karvelis and A. Likas, "Fully Unsupervised M-FISH Chromosome
Image Characterization", IEEE Journal of Biomedical and
Health Informatics, vol. 17, no 6, pp.
1068-1078, 2014.
· K. Blekas and A. Likas, "Sparse regression mixture modeling with
the multi-kernel relevance vector machine", Knowledge and Information Systems, vol. 39, pp. 241-264, 2014.
· G. Tzortzis and A. Likas, "The MinMax k-Means clustering
algorithm", Pattern Recognition, vol. 47, pp.
2505–2516, 2014.
· D. Gerogiannis, C. Nikou and A.
Likas, "Modeling sets of unordered
points using highly eccentric ellipses", EURASIP
Journal on Advances in Signal Processing, vol. 11, 2014.
· D. Gerogiannis, C. Nikou and A.
Likas, "Elimination of Outliers from 2-D
Point Sets Using the Helmholtz Principle", IEEE
Signal Processing Letters, vol. 22, no. 10, pp. 1638-1642, 2015.
· M. Sakka, G. Tzortzis, M. Mantzaris,
N. Bekas, T. Kellici, A. Likas, D. Galaris, I. Gerothanassis, A. Tzakos, "PRESS: Protein S-sulfenylation Server", Bioinformatics, vol. 32, no. 17, pp. 2710-2712,
2016.
· A. Ioannidis A., Chasanis V. and A.
Likas, "Weighted Multi-View Key-frame
Extraction", Pattern Recognition Letters, vol. 72, 1
pp. 52-61, 2016.
· V. Karavasilis, C. Nikou and A.
Likas. "Real time visual tracking using a
spatially weighted von Mises mixture model", Pattern
Recognition Letters, vol. 90, pp. 50-57, 2017.
· P. Spyridonos a, G. Gaitanis, A.
Likas and I. Bassukas, "Automatic discrimination of actinic keratoses
from clinical photographs", Computers in Biology and
Medicine, vol. 88, pp. 50-59, 2017.
· A. Ioannidis A., Chasanis V. and A.
Likas, "Camera Motion Detection Through
Frame Splitting and Combination of Region-Based Motion Signals", International Journal of Pattern
Recognition and Artificial Intelligence, vol. 32, no. 9, 2018.
· E. Gelenbe, A. Stafylopatis and A.
Likas, "Associative Memory Operation of the Random Network Model", Proc.
International Conference on Artificial Neural Networks (ICANN 91) , Vol. 1, pp.
307-312, Espoo, Finland, June 1991, (North-Holland, 1991).
· A. Likas and A. Stafylopatis, "An Investigation of the Analogy between
the Random Network and the Hopfield Network", Proc. 6th International Symposium on
Computer and Information Sciences , pp. 849-857, Antalya, Turkey, Nov. 1991.
· D. Kontoravdis, A. Likas and A.
Stafylopatis, "Collision-Free Movement of an Autonomous
Vehicle Using Reinforcement Learning", Proc. European Conference on Artificial
Intelligence (ECAI 92) ,
pp. 666-670, Vienna, August 1992.
· D. Kontoravdis, A. Likas and A.
Stafylopatis, "A Reinforcement Learning Algorithm for Networks of Units
with Two Stochastic Levels", Proc. International Conference on
Artificial Neural Networks (ICANN 92) , pp. 143-146, Brighton, UK, Sep. 1992.
· D. Kontoravdis, A. Likas and A.
Stafylopatis, "Embedding Knowledge into Stochastic Learning Automata for
Fast Solution of Binary Constraint Satisfaction Problems", Proc.
European Symposium on Artificial Neural Networks (ESANN'93) , pp. 21-26, Brussels, April 1993.
· A. Likas and A. Stafylopatis,
"A Neural Network Technique for Associative Retrieval of Symbolic Pictures",
Proc. IEEE Int. Conf. on Neural Network Applications to Signal Processing
(NNASP'93) ,
pp. 204-209, Singapore, August 1993.
· D. Kontoravdis, A. Likas and A.
Stafylopatis, "Efficient Reinforcement Learning Stategies for the Pole
Balancing Problem", Proc. International Conference on Artificial Neural
Networks (ICANN 94) ,
Vol. 1, pp. 659-662, Sorento, Italy, May 1994.
· D. Kontoravdis, A. Likas, K. Blekas
and A. Stafylopatis, "A Fuzzy Neural Network Approach to Autonomous
Vehicle Navigation", Proc. European Robotics and Intelligent Systems
Conference (EURISCON'94) ,
pp. 243-252, Malaga, Spain, August 1994.
· A. Likas, K. Blekas and A.
Stafylopatis, "Application of Fuzzy Min-Max
Neural Network Classifier to Problems with Continuous and Discrete
Attributes", Proc.
IEEE Int. Workshop on Neural Networks for Signal Processing (NNSP'94) , pp.
163-170, Ermioni, Greece, September 1994.
· A. Likas, K. Blekas and A.
Stafylopatis, "Parallel Recombinative
Reinforcement Learning", Proc. 8th European Conference on Machine Learning (ECML-95) ,
Heraklion, Greece, April 1995, (Lecture Notes in Artificial Intelligence, Vol.
912, pp. 311-314, Springer Verlag, 1995).
· A. Bouju, J.F. Boyce, C.
Dimitropoulos, G. vom Scheidt, J. Taylor, A. Likas, G. Papageorgiou and A.
Stafylopatis, "Intelligent Search for the Radio Links Frequency Assignment
Problem", Proc. Int. Conference on Digital Signal Processing (DSP95) ,
pp. 408-414, Limassol, Cyprus, June 1995.
· K. Blekas, A. Likas and A.
Stafylopatis, "A Fuzzy Neural Network
Approach Based on Dirichlet Tesselations for Nearest Neighbor Classification of
Patterns", Proc.
IEEE Int. Workshop on Neural Networks for Signal Processing (NNSP'95) , pp.
153-161, Boston, MA, Aug.-Sep. 1995.
· I. Lagaris, A. Likas, D. Fotiadis
and C. Massalas, "A Hardware Implementable Non-linear Method for the
Solution of Ordinary, Partial and Integrodifferential Equations", Workshop
on Applied Mathematics in Science and Modern Technology, Metsovo, Greece,
July 1997.
· K. Blekas, A. Likas and A.
Stafylopatis, "A Fuzzy Neural Network Approach
to Classification Based on Proximity Characteristics of Patterns", Proc. 9th IEEE Int. Conference
on Tools with Artificial Intelligence (ICTAI'97) , Newport Beach, CA,
November, 1997.
· A. Likas, "Mutlivalued Parallel Recombinative
Reinforcement Learning", Proc. HERCMA'98 Conference,
vol. 1, pp. 378-385, Athens, October 1998.
· I.E. Lagaris, A. Likas and D.G.
Papageorgiou, "Neural Network Techniques for Solving Differential
Equations", Proc. of CSCC'98,
Athens, Greece, 1998.
· I.E. Lagaris, A. Likas and D.G.
Papageorgiou, "Neural Network Methods for Boundary Value Problems Defined
in Arbitrarily Shaped Domains", Proc.
of CSCC'99, Athens, Greece, 1999.
· C. Papaloukas, D.I. Fotiadis, A.
Likas, A.P. Liavas and L.K. Michalis, "A Robust Knowledge Based Technique
for Ischemia Detection in Noisy ECGs", KES'2000, 4th International
Conference on Knowledge – Based Intelligent Engineering Systems and Allied
Technologies, vol. 2, pp. 768-771, Sussex, U.K, September 2000.
· M. Titsias and A. Likas, "A Probabilistic RBF Network for
Classification",
Proc. of the Int. Joint Conference on Neural Networks (IJCNN'2000) , Como, Italy,
2000.
· M. Titsias, D. Fotiadis and A.
Likas, "Estimation of Concrete Characteristics Using Pattern Recognition
Methods", 6th National Congress on Mechanics , Thessaloniki, Greece, 2001.
· C. Papaloukas, D. Fotiadis, A. Likas
and L. Michalis, "A Neural Network Methodology for Ischaemia Detection in
Long Duration Elec trocardiograms", Neural Networks and Expert Systems
in Medicine and Healthcare, NNESMED 2001 , Milos, Greece, June 2001.
· A. Papadopoulos, D. Fotiadis and A.
Likas, "A Hybrid Neural Network Method for Microcalcification Cluster
Detection in Mammography", Neural Networks and Expert Systems in
Medicine and Healthcare, NNESMED 2001 , Milos, Greece, June 2001.
· D. Frossyniotis, S. Vrettos, A.
Stafylopatis, D. Fotiadis, A. Likas and G. Potamias, "An Intelligent
System for the Early Diagnos is of Coronary Artery Disease", Neural
Networks and Expert Systems in Medicine and Healthcare, NNESMED 2001 Milos,
Greece, June 2001.
· K. Blekas, D. Fotiadis and A. Likas,
"A Sequential Method for Discovering Probabilistic Motifs in Proteins",
4th International Workshop on Biosignal Interpretation , June 2002, Villa Olmo, Como,
Italy.
· K. Valasoulis, D. Fotiadis, I.
Lagaris and A. Likas, "Solving Differential Equations with Neural
Networks: Implementation on a DSP Platform", 14th International
Conference on Digital Signal Processing , Santorini, Greece, July 2002.
· C. Constantinopoulos, M. Titsias and
A. Likas, "A Bayesian Regularization Method for the Probabilistic RBF
Network", Proc. 2nd Hellenic Conference on AI, SETN 2002 , pp. 337-345,
Springer, 2002.
· I. Tsoulos, I. Lagaris and A. Likas,
"Piecewise Neural Networks for Function Approximation Cast in a Form
Suitable for Parallel Implementation", Proc. 2nd Hellenic Conference on
AI, SETN 2002 , pp. 314-324, Springer, 2002.
· K. Blekas, D. Fotiadis and A. Likas,
"Protein Sequence Classification using Probabilistic Motifs and Neural
Networks ", Proc. Intern. Conference on Artificial Neural Networks
(ICANN/ICONIP 2003) , Istanbul, Turkey, Lecture Notes in Computer Science,
vol. 2714, Springer -Verlag, pp. 702-709, 2003.
· A. Likas and N. Galatsanos, "A
Variational Method for Bayesian Blind Image Deconvolution", Proceedings
of the IEEE International Conference on Image Processing (ICIP'03),
Barcelona, Spain, September 2003.
· K. Blekas and A. Likas,
"Incremental Mixture Learning for Clustering Discrete Data", Proc.
3rd Hellenic Conference on AI, SETN 2004 , pp. 210-219, Springer, 2004.
· C. Constantinopoulos and A. Likas,
"Efficient Training Algorithms for the Probabilistic RBF Network", Proc.
3rd Hellenic Conference on AI, SETN 2004 , pp. 183-190, Springer, 2004.
· K. Valasoulis and A. Likas, "Probabilistic Shape-Based Image Indexing
and Retrieval",
Proceedings of the IEEE International Conference on Pattern Recognition
(ICPR'04) ,
Cambridge, UK, August 2004.
· G. Chantas, N. Galatsanos and A.
Likas, "Non Stationary Bayesian Image Restoration", Proceedings of
the IEEE International Conference on Pattern Recognition (ICPR'04),
Cambridge, UK, August 2004.
· D. Tzikas, A. Likas, N. Galatsanos,
A. Lukic and M. Wernick, "Bayesian Regression of Functional
Neuroimages", Proc. EUSIPCO-2004 , Vienna, August 2004.
· K. Blekas, A. Likas, N. Galatsanos
and I. Lagaris, "Mixture Model Based Image Segmentation with Spatial
Constraints", Proc. EUSIPCO-2004 , Vienna, August 2004.
· G. Sfikas, C. Constantinopoulos, A.
Likas and N. Galatsanos, "An Analytic Distance Metric for Gaussian
Mixture Models with Application in Image Retrieval", Proc. 15th Int. Conf. on Artificial Neural Networks (ICANN’05),
Part II, pp. 835-840, Springer, 2005.
· G. Chantas, N. Galatsanos and A.
Likas, "Maximum a Posteriori Image Restoration Based on a New Directional
Continuous Edge Image Prior", Proc. IEEE Int. Conf. on Image Processing
(ICIP'05), vol. I, pp. 941-944,
September 2005.
· D. Tzikas, A. Likas, and N.
Galatsanos, "Large
scale multikernel RVM for object detection", Proc. Hellenic Conference on Artificial Intelligence (SETN'06), pp.
389-399, Heraklion, Crete, Greece, Springer, 2006.
· A. Kalogeratos and A. Likas, "A
Significance-Based Graph Model for Clustering Web Documents", Proc. Hellenic Conference on Artificial
Intelligence (SETN'06), pp. 516-519, Heraklion, Crete, Greece, Springer,
2006.
· C. Constantinopoulos and A.
Likas,"Active Learning with the Probabilistic RBF Classifier", Proc. 16th Int. Conf. on Artificial Neural
Networks (ICANN’06), vol. 1, pp 257-366, Athens, Greece, Springer, 2006.
· A. Marakakis, N. Galatsanos, A.
Likas and A. Stafylopatis, "A Relevance Feedback Approach for Content
Based Image Retrieval Using Gaussian Mixture Models", Proc. 16th Int. Conf. on Artificial Neural Networks (ICANN’06),
vol. 2, pp. 84-93, Athens, Greece, Springer, 2006.
· C. Constantinopoulos and A. Likas, "Active Bayesian Mixture Learning for
Image Modeling and Segmentation Using Low Level Features", Proc. Machine Learning for Signal Processing (MLSP’06), Ireland,
Sept. 2006.
· D. Tzikas, A. Likas, and N.
Galatsanos, "Variational Bayesian blind image deconvolution based on a
sparse kernel model for the point spread function", Proc. European Signal Processing Conference (EUSIPCO'06), Florence,
Italy, September 2006.
· D. Tzikas, A. Likas, and N.
Galatsanos. Robust variational Bayesian kernel based blind image deconvolution,
Proc. Int. Conf. on Computer Vision
Theory and Applications (VISAPP’07), pp. 143-150, Barcelona, Spain, March
2007.
· V. Chasanis, A. Likas and N.
Galatsanos, "Scene
Detection in Videos Using Shot Clustering and Symbolic Sequence
Segmentation", Proc. IEEE Int.
Workshop on Multimedia Signal Processing (MMSP’07), pp. 187-190, Chania,
Greece, 2007.
· D. Gerogiannis, C. Nikou and A.
Likas, A, "Rigid image registration based
on pixel grouping", Proc. 14th Int. Conf. on Image
Analysis and Processing (ICIAP’07), pp. 595-602, Modena, Italy, 2007.
· D. Gerogiannis, C. Nikou and A. Likas,
"Robust image registration
using mixtures of t-distributions", Proc.
8th IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image
Analysis (MMBIA'07), in conjunction with ICCV'07, Rio, Brazil, 2007.
· D. Tzikas, M. Kukar, and A. Likas, "Transductive reliability estimation for
kernel based classifiers", Proc. Int. Symposium on
Intelligent Data Analysis (IDA'07), pp. 37-47, Ljubljana, Slovenia,
Springer 2007.
· G. Chantas, N. Galatsanos, and A.
Likas, "Bayesian Image Restoration Based on Variational Inference and a
Product of Student-t Priors", Proc.
IEEE Int. Conf. on Machine Learning for Signal Processing (MLSP'07),
Thessaloniki, Greece, August 2007.
· C. Constantinopoulos and A. Likas, "Image Modeling and Segmentation using
Incremental Bayesian Mixture Models", Proc.
12th Int. Conf. on Computer Analysis of Images and Patterns (CAIP'07), pp.
596-603, Springer, 2007.
· D. Tzikas, A. Likas, and N.
Galatsanos. Bayesian bid based on a kernel model for the point spread function,
Proc. IEEE Int. Conf. on Image
Processing (ICIP'07), San Antonio, USA, September
2007.
· G. Tzortzis and A. Likas, "Deep Belief Networks for Spam
Filtering", Proc. Int. Conf. on Tools with AI
(ICTAI’07), vol. 2, pp. 306-309, Patras, Greece, 2007.
· G. Tzortzis and A. Likas, "The Global Kernel K-means Clustering
Algorithm", Proc. Int. Joint Conf. on Neural Networks
(IJCNN’08), pp. 1977-1984, Hong, Kong, June 2008.
· A. Alivanoglou and A. Likas, "Probabilistic Models Based on the
Pi-Sigmoid Distribution", Proc. 3rd IAPR Workshop on
Artificial Neural Networks in Pattern Recognition (ANNPR’08), pp. 36-43,
Paris, Springer 2008.
· V. Chasanis, A. Likas and N.
Galatsanos, "A Support Vector Machine Approach
for Video Shot Detection",
Proc. Int. Symposium on Intelligent
Interactive Multimedia Systems and Services (IIMSS’08), Piraeus, Greece,
pp. 45-54, Springer 2008.
· V. Chasanis, A. Likas and N.
Galatsanos, "Video rushes summarization using spectral
clustering and sequence alignment", Proceedings of the 2nd
ACM Workshop on Video Summarization (TVS’08), Vancouver, Canada, October 2008.
· V. Chasanis, A. Likas and N.
Galatsanos, "Efficient Video Shot Summarization
Using an Enhanced Spectral Clustering Approach", Proc. Int. Conf. on Artificial
Neural Networks (ICANN’08), vol. 1 pp.
847-856, Prague, Springer, 2008.
· K. Blekas, N. Galatsanos and A.
Likas, "A Sparse Regression Mixture Model
for Clustering Time-Series", Proc. Hellenic Conference on Artificial Intelligence (SETN'08), pp. 64-72, Syros, Greece, Springer
2008.
· D. Tzikas, A. Likas, and N.
Galatsanos, "Incremental
relevance vector machine with kernel learning", Proc. Hellenic Conference on Artificial Intelligence (SETN'08), pp.
301-312, Syros, Greece, Springer 2008.
· A. Marakakis, N. Galatsanos, A.
Likas and A. Stafylopatis, "Application of Relevance Feedback in Content
Based Image Retrieval Using Gaussian Mixture Models", Proc.
Int. Conf. on Tools with AI (ICTAI’08), vol. 1, pp. 141-148, Dayton, Ohio,
2008.
· V. Chasanis, A. Likas and N.
Galatsanos, "Movie Segmentation into Scenes and Chapters
Using Locally Weighted Bag of Visual Words", Proc. ACM International Conference on Image and Video Retrieval (CIVR’09), Santorini, Greece, July 2009.
· D. Tzikas, A. Likas, and N.
Galatsanos, "Local Feature Selection for
the Relevance Vector Machine using Adaptive Kernel Learning", Proc. Int. Conf. on Artificial Neural Networks (ICANN’09), Limassol, Cyprus, Springer, 2009.
· A. Marakakis, N. Galatsanos, A.
Likas and A. Stafylopatis, "Relevance Feedback for Content-Based Image
Retrieval Using Support Vector Machines and Feature Selection",
Proc. Int. Conf. on Artificial
Neural Networks (ICANN’09), Limassol, Cyprus, Springer, 2009.
· G. Tzortzis and A. Likas, "Convex Mixture Models for Multi-view
Clustering", Proc. Int. Conf. on Artificial Neural
Networks (ICANN’09),
Limassol, Cyprus, Springer, 2009.
· A. Marakakis, N. Galatsanos, A.
Likas and A. Stafylopatis, "Combining Gaussian Mixture Models and Support
Vector Machines for Relevance Feedback in Content Based Image Retrieval", Proc.
Artificial Inteligence. Applications and Innovations (AIIA’09), Springer, 2009.
· V. Chasanis and A. Likas,
"Event Detection and Classification in Video Surveillance Sequences",
Proc. Hellenic Conference on Artificial
Intelligence (SETN'10), Athens, Greece, Springer 2010.
· V. Karavasilis, C. Nikou and A.
Likas, "Visual tracking by adaptive Kalman
filtering and mean shift", Proc. Hellenic
Conference on Artificial Intelligence (SETN'10), pp. 153-162, Athens, Greece, Springer 2010.
· D. Tzikas and A. Likas, "An Incremental Bayesian Approach for
Training Multilayer Perceptrons", Proc. Int. Conf. on Artificial
Neural Networks (ICANN’10), Thessaloniki,
Greece, Springer 2010.
· M. Robnik-Sikonja, A. Likas, C.
Constantinopoulos, I. Kononenko and E. Strumbelj, "Efficiently Explaining Decisions of
Probabilistic RBF Classification Networks", Proc.
ICANNGA 2011, Part. 1, pp. 169-179, Ljubljana, Slovenia, Springer 2011.
· D. Gerogiannis, C. Nikou and A.
Likas, "A split-and-merge framework for 2D shape summarization”, 7th Int. Symp. on
Image and Signal Processing and Analysis (ISPA’11), pp. 206-2011,
Dubrovnik, Croatia, September 2011.
· G. Tzortzis and A. Likas,
"Greedy Unsupervised Multiple Kernel Learning", Proc. Hellenic Conference on Artificial Intelligence (SETN'12), pp.
73-80, Lamia, Greece, Springer 2012.
· V. Karavasilis, C. Nikou and A.
Likas, "Gaussian Mixture-based Mean Shift for Tracking under Abrupt
Illumination Changes", Proc. 8th
Int. Conf. on Information Hiding and Multimedia Signal Processing, Piraeus,
Greece, 2012.
· G. Piperagkas, G. Georgoulas, K.
Parsopoulos, C. Stylios and A. Likas, "Integrating Particle Swarm Optimization with
Reinforcement Learning in Noisy Problems", Proc.
Genetic and Evolutionary Computation Conference (GECCO’12), Philadelphia,
USA, 2012.
· D. Gerogiannis, C. Nikou and A.
Likas, "Fast and
efficient vanishing point detection in indoor images ", Proc. Int. Conf. Pat. Rec. (ICPR’12),
Tsukuba, Japan, 2012.
· V. Karavasilis, C. Nikou and A.
Likas, "Visual
Tracking by Weighted Likelihood Maximization", Proc. Int. Conf. on AI Tools (ICTAI’12), Piraeus, Greece, 2012.
· A. Kalogeratos and A. Likas, "Dip-means: an incremental clustering
method for estimating the number of clusters", Proc.
Neural Information Processing Systems (NIPS’12), Lake Tahoe, Nevada, USA, 2012.
· K. Blekas and A. Likas, "The mixture of multi-kernel relevance vector
machines model",
Proc IEEE Int. Conf. Data Mining
(ICDM’12), Brussels, 2012.
· G. Tzortzis and A. Likas, "Kernel-based Weighted Multi-view
Clustering", Proc IEEE Int. Conf. Data Mining (ICDM’12),
Brussels, 2012.
· G. Tzortzis and A. Likas, "Ratio-Based Multiple Kernel
Clustering", Proc Eur. Conf. Machine Learning (ECML’14),
Nancy, France, 2014.
· A. Ioannidis, V. Chasanis and A. Likas, "Key-frame Extraction using Weighted
Multi-View Convex Mixture Models and Spectral Clustering", Proc. Int. Conf.
Pattern Recognition (ICPR'14), Stockholm, 2014 (Best Scientific
Paper Award).
· D. Gerogiannis, C. Nikou and A.
Likas, "Global Sampling of Image
Edges", Proc. Int. Conf. Image Processing
(ICIP’14), Paris, 2014.
· A. Ioannidis A., V. Chasanis V and
A. Likas, "An Agglomerative Approach for Shot
Summarization Based on Content Homogeneity", Proc.
7th International Conference on Machine Vision (ICMV 2014), Milan, SPIE, 2014.
· A. Ioannidis A., V. Chasanis V and
A. Likas, "Efficient Key-frame Extraction Based on
Unimodality of Frame Sequences", Proc. 12th IEEE
International Conference on Signal Processing (ICSP 2014), 2014.
· A. Kalogeratos, P. Zagorisios and A.
Likas, "Improving Text Stream Clustering using Term
Burstiness and Co-burstiness", Proc. Hellenic Conference on Artificial
Intelligence (SETN'16), Thessaloniki, Greece, ACM Press, 2016.
· S. Adam, A. Likas and M. Vrahatis, "Interval
Analysis Based Neural Network Inversion: A Means for Evaluating Generalization",
Proc. Int. Conf. on Engineering Applications of
Neural Networks (EANN 2017), Athens, Greece, Springer, 2017.
· T. Chamalis and A. Likas, "Region Merging for Image
Segmentation Based on Unimodality Tests", Proc. IEEE Int. Conf. on Control,
Automation and Robotics (ICCAR 2017), Nagoya, Japan, 2017.
· E. Papapetrou and A. Likas, "Cluster-based Replication: a
Forwarding Strategy for Mobile Opportunistic Networks", Proc. IEEE Int. Symp. on a World of Wireless
Mobile and Multimedia Networks (WoWMoM’18), Chania, Greece, 2018.
· T. Chamalis and A. Likas, "The Projected Dip-means Clustering Algorithm", Proc. Hellenic
Conference on Artificial Intelligence (SETN'18), Patras, Greece, ACM Press, 2018.